skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gelinsky, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose of ReviewThe purpose of this review is to share insights from recognized experts in 3D biopriniting on the recent advances in these technologies discussed during a recent workshop held in conjunction with the 2024 ISS National Laboratory Research and Development Conference (ISSRDC). We seek to answer how microgravity can be used as a disruptor to make further advances not possible through conventional means. Recent FindingsThis review will cover current efforts underway to use microgravity for 3D bioprinting. For instance multi-levitation biofabrication technology funded under the EU PULSE project is currently being used to create cardiovascular 3D in vitro models to better mimic cardiac and vascular physiology compared to organoids. These types of models could be expanded to other organ systems and disease models to use the environment of microgravity to unlock new signaling pathways to cure disease. SummaryThe major takeaway from this review is that microgravity will unlock new opportunities for 3D bioprinting that were simply not possible using conventional means. We provide forward looking answers to what microgravity will inspire from advanced biomaterials to new disease models to even creating a knowledge hub for 3D bioprinting to launch new platforms at record speeds. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026